Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems
نویسندگان
چکیده
By further generalizing the concept of Hermitian (or normal) and skew-Hermitian splitting for a non-Hermitian and positive-definite matrix, we introduce a new splitting, called positive-definite and skew-Hermitian (PS) splitting, and then establish a class of positivedefinite and skew-Hermitian splitting (PSS) methods similar to the Hermitian (or normal) and skew-Hermitian splitting (HSS or NSS) method for iteratively solving the positive definite systems of linear equations. Theoretical analysis shows that the PSS method converges Subsidized by The Special Funds For Major State Basic Research Projects G1999032803. Research supported, in part, by DOE-FC02-01ER4177. Supported by National Natural Science Foundation of China.
منابع مشابه
Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems
Comparing the lopsided Hermitian/skew-Hermitian splitting (LHSS) method and Hermitian/skewHermitian splitting (HSS) method, a new criterion for choosing the above two methods is presented, which is better than that of Li, Huang and Liu [Modified Hermitian and skew-Hermitian splitting methods for nonHermitian positive-definite linear systems, Numer. Lin. Alg. Appl., 14 (2007): 217-235]. Key-Word...
متن کاملConvergence Properties of Hermitian and Skew Hermitian Splitting Methods
In this paper we consider the solutions of linear systems of saddle point problems. By using the spectrum of a quadratic matrix polynomial, we study the eigenvalues of the iterative matrix of the Hermitian and skew Hermitian splitting method.
متن کاملConvergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices
For the non-Hermitian and positive semidefinite systems of linear equations, we derive sufficient and necessary conditions for guaranteeing the unconditional convergence of the preconditioned Hermitian and skew-Hermitian splitting iteration methods. These result is specifically applied to linear systems of block tridiagonal form to obtain convergence conditions for the corresponding block varia...
متن کاملAccelerated normal and skew - Hermitian splitting
For solving large sparse non-Hermitian positive definite linear equations, Bai et al. proposed the Hermitian and skew-Hermitian splitting methods (HSS). They recently generalized this technique to the normal and skew-Hermitian splitting methods (NSS). In this paper, we present an accelerated normal and skew-Hermitian splitting methods (ANSS) which involve two parameters for the NSS iteration. W...
متن کاملA Class of Preconditioned TGHSS-Based Iteration Methods for Weakly Nonlinear Systems
In this paper, we first construct a preconditioned two-parameter generalized Hermitian and skew-Hermitian splitting (PTGHSS) iteration method based on the two-parameter generalized Hermitian and skew-Hermitian splitting (TGHSS) iteration method for non-Hermitian positive definite linear systems. Then a class of PTGHSSbased iteration methods are proposed for solving weakly nonlinear systems base...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2005